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1 Introduction
The development of deep learning techniques has largely improved the state-of-the-
art segmentation methods [2, 3, 8]. Recently, fully convolutional networks (FCN) [3]
provides a great choice for semantic image segmentation [2–4, 6–9]. Thus, we pro-
pose a FCN-like network to automatically segment the brain MRI. Due to a lot of
issues in medical image field (small data set size, 3D format and so on), we pro-
pose several mechanisms (such as using a transmission module, residual learning
module and intermedia-supervision modules) to solve the training problems of the
network. Most importantly, we provide an adversarial correction network [1, 5] to
evaluate the quality of segmentation network and thus we can improve the training
for difficult cases. Dropout is also involved to relieve overfitting. We use generalized
dice loss hybrided by softmax loss as the objective function.

This work is done in a 2D manner due to time limit. Personally, it is worth to
run the 3D version if time allowed.

2 Experiments

We use MRBrain2018 dataset (see the description in the below paragraph) for
training in a leave-one-out manner. And the patch size we extracted for training is
3x192x192. We are planning to evaluate our proposed approach on the test dataset
of brain MRI segmentation.

The results on training validation likes (show case 7):
dice1= 0.893537644759 dice2= 0.965670723041 dice3 = 0.914421178163 dice4 =

0.999999997917 dice5 = 0.881257114503 dice6 = 0.983529680882 dice7 = 0.93848676381
dice8 = 0.99472058969 dice9 = 0.0 dice10 = 0.0

And the results on validation validation (show case 1):
dice1 = 0.846024607653 dice2 = 0.837783064583 dice3 = 0.890493967206 dice4

= 0.68446979516 dice5 = 0.827850313027 dice6 = 0.942282799052 dice7 = 0.904149703592
dice8 = 0.754513481823 dice9 = 0.0 dice10 = 0.0

“Image data used in this challenge were acquired on a 3T scanner at the UMC
Utrecht (the Netherlands). For each of the 30 subjects, fully annotated multi-
sequence (T1-weighted, T1-weighted inversion recovery and T2-FLAIR) scans are
available. The 30 subjects include patients with diabetes, dementia and Alzheimers,
and matched controls (with increased cardiovascular risk) with varying degrees of
atrophy and white matter lesions (age > 50).”
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